
End to end network compression using
differentiable quantized weights

Santanu Rathod∗

Department of Electrical Engineering,
IIT-Bombay.

CVL-ETH Zurich.
santanusrathod4415@gmail.com

July 1, 2019

Abstract

In the recent years neural networks have seen remarkable success on
many of the computer vision and other tasks, but they usually require an
army of GPUs in order to perform robustly. There have been attempts to
have a comparable robust performance without using huge computational
resources or simply put compress the information contained in the original
neural network architectures. In this study we propose a novel end to
end architecture with differentiable quantized weights which gives robust
performance when compared with the original models learned weights
for inference tasks. This in our knowledge is the first attempt towards
having an end to end architecture with all the mechanisms occuring in a
single pipeline without going through explicit pruning, sparsification or
any parent teacher networks.

Network Compression Differentiable quantization

1 Introduction
In recent years, deep neural networks (DNNs) have led to many breakthrough
results in machine learning and computer vision, and are now widely deployed
in industry. Modern DNN models often have millions or tens of millions of
parameters, leading to highly redundant structures, both in the intermediate
feature representations they generate and in the model itself. Although over-
parametrization of DNN models can have a favorable effect on training, in
practice it is often desirable to compress DNN models for inference, e.g., when
deploying them on mobile or embedded devices with limited memory. The ability
to learn compressible feature representations, on the other hand, has a large

∗Links for homepage of authors.

1

potential for the development of (data-adaptive) compression algorithms for
various data types such as images, audio, video, and text, for all of which various
DNN architectures are now available.

The work in the network compression community so far for can be roughly
divided in a basic approaches 1. Using pruning-quantization-pruning[2], 2. Train-
ing a smaller student from a parent [4], 3. Learning sparse representations [12],
4. Using MDL(Minimum Description Principle) to learn compact bayesian repre-
sentations [11]. Some others explore the possibility of finding the best compact
neural architectures, using either reinforcement learning(RL) or NAS(neural
architecture search).

We take a bit of a detour from the above mentioned techniques and look
at the problem of network compression from a rate-distortion perspective. In
order to compress a set of continuous model parameters or features, we need to
approximate each parameter by one representative from a set of quantization
levels (or vectors, in the multi-dimensional case), each associated with a symbol,
and then store the assignments (symbols) of the parameters or features, as well
as the quantization levels.

Representing each parameter of a DNN model will come at the cost of a distortion
D, i.e., a loss in performance (e.g., in classification accuracy for a classification
DNN with quantized model parameters. The rate R, i.e., the entropy of the
symbol stream, determines the cost of encoding the model or features in a
bitstream.To learn a compressible DNN model or feature representation we
need to minimize D + βR, where β > 0 controls the rate-distortion trade-off.
Including the entropy into the learning cost function can be seen as adding a
regularizer that promotes a compressible representation of the network or feature
representation. However, two major challenges arise when minimizing (D + β
R) for DNNs:
i) Coping with the non-differentiability (due to quantization operations) of the
cost function D+β R and ii) obtaining an accurate and differentiable estimate
of the entropy (i.e., R).

In this study, we propose a unified end-to-end learning framework for learning ,
jointly optimizing the model parameters, the quantization levels, and the entropy
of the resulting symbol stream to compress the model itself. We address both
challenges i) and ii) above with methods that are novel in the context DNN
model and feature compression.

2

2 Related work

2.1 Non-bayesian based approaches:
There is an ample amount of research on compressing neural networks, so that
we will only discuss the most prominent ones, and those which are related to
our work. An early approach is Optimal Brain Damage [1] which employs the
Hessian of the network weights in order to determine whether weights can be
pruned without significantly impacting training performance. A related but
simpler approach was proposed in [2], where small weights are truncated to
zero, alternated with re-training. This simple approach yielded – somewhat
surprisingly – networks which are one order of magnitude smaller, without
impairing performance. The approach was re- fined into a systematic pipeline
called Deep Compression, where magnitude-based weight pruning is followed by
weight quantization (clustering weights) and Huffman coding [3].

HashNet proposed by [6] also follows a simple and surprisingly effective ap-
proach: They exploit the fact that training of neural networks is resistant to
imposing random constraints on the weights. In particular, they use hashing to
enforce groups of weights to share the same value, yielding memory reductions
of up to 64x with gracefully degrading performance.

Several attempts at KD (knowledge distillation) have also been made, most
notable of them include, by [4], [5]. In these techniques they essentially try
to distill the learning into a smaller student network, jointly with the teacher
network. Extensions to their work tries to implement them quantized manner.

2.2 Bayesian based approaches:
These methods are primarily motivated by using a bayesian variational framework
and somehow attempting to use the bits back argument [7] into the framework.
Works like Bayesian Compression [8] use a Bayesian variational framework
and are motivated by the bits-back argument. They introduce using hierarchi-
cal priors to prune nodes instead of individual weights and use the posterior
uncertainties to determine the optimal fixed point precision to encode the weights.

Ullrich et al. [9] they show that competitive compression rates can be achieved
by using a version of ’soft weight-sharing’ [10], they achieve both quantization
and pruning in one simple (re-)training procedure, exposing the relation between
compression and the minimum description length (MDL) principle.

Previous works however still essentially sample the weights from a learned distri-
bution and then use it, to which Minimal Random Code Learning(MIRACLE)
[11] study argues can be still improved by relaxing weight determinism and
using a full variational distribution over weights allows for more efficient coding
schemes and consequently higher compression rates.

3

2.3 Other:
Other techniques include using sparsification, like in Variational Dropout Spar-
sifies Deep Neural Networks by [12], their work essentially uses a trick which
reduces the huge gradient variation which occurs during the training of Vari-
ational dropout for dropout rate α –> ∞, and thereby providing an elegant
technique for sparsification. Techniques as suggested by [13] use novel meth-
ods of NAS(Neural Archihtecture Search) called Differentiable Architecture
Search(DARC).
[14] use reinforcement learning techniques to learn a sparse representation of a
DNN architecture wherein the agent learns as to which layers it can afford to
drop without significant drop in accuracy.

3 Proposed Method
In this section we include the problem formulation, challenges, and our imple-
mentation techniques. What we in essence do is, 1. replace the basic layers’
weights by the differentiable quantized weights, with the resulting cross entropy
loss, L(y, ŷ) between labels and our final feature map being interpreted as our
distortion, 2. assume that each of our weight comes from a N(µ, σ2) and thus
get a rate(R) term, H(w, ŵ). Where w: original weights, ŵ: quantized weights.
Thus we intend to minimize:
Lnet= L(y, ŷ) + βH(w, ŵ).
Where w: original weights, ŵ: quantized weights, β>0:controls the rate-
distortion trade-off.

The reader should recall that higher the rate(R) lesser the distortion[15] and
vice versa. So we intend to find a middle ground between the rate-distortion
trade-off.

3.1 Problem Formulation
Preliminaries and Notations. We consider the standard model for Deep
neural networks, where we have an architecture F : Rd1→RdK+1 composed of
K layers F = FKF1 , where layer Fi maps Rdi→Rdi+1 , and has parameters
wi ∈ Rmi . We refer to W = [w1, ..., wK] as the parameters of the network and
we denote the intermediate layer outputs of the network as x(0) := x and x(i)
:= Fi(x

(i−1)), such that F (x) = x(K) and x(i) is the feature vector produced
by layer Fi. The parameters of the network are learned w.r.t. training data
X = x1, ..., xN ⊂ Rd1 and labels Y = y1, ..., yN ⊂ RdK+1 , by minimizing a
real-valued loss L(X,Y;F). Typically, the loss can be decomposed as a sum over
the training data plus a regularization term,

4

L(X,Y;F)=
1

N

N∑
i=1

L(F (xi), yi) + λR(W) (1)

where L(F(x),y) is the sample loss, λ > 0 sets the regularization strength, and
R(W) is a regularizer (e.g., R(W) =

∑
i wi

2 for l2 regularization). In this case,
the parameters of the network can be learned using stochastic gradient descent
over mini-batches. Assuming that the data X , Y on which the network is trained
is drawn from some distribution PX,Y , the loss L(X,Y;F) can be thought of as
an estimator of the expected loss E[L(F (X), Y) + λR(W)].

Compressible Representations We say that a weight parameter wi if it can
be serialized to a binary stream using few bits. For DNN compression, we want
the entire network parameters W to be compressible.
To store wi with a finite number of bits, we need to map it to a discrete space.
Specifically, we map wi to a sequence of m symbols using a (symbol) encoder
E: Rd → [L]m, where each symbol is an index ranging from 1 to L, i.e., [L] :=
1,...,L. We assume that wi is a sample from N(µ, σ2).
So now our rate-distortion loss function becomes:

min
W,D,E

EX,Y (L(F̂(x)), y + λR(W)) + βH(w, ŵ)

= min
W,D,E

EX,Y (L(F̂(x)), y + λR(W)) + β
∑N
i=1(

∫∞
−∞−p(wi)d(wi) ∗ log(p(ŵi)))

= min
W,D,E

EX,Y (L(F̂(x)), y + λR(W)) + β
∑N
i=1(−1 ∗ log(p(ŵi))).........(since we

have ŵi ∈ [L], so p(wi) ⊥ p(ŵi))

(2)

Challenges The problem of finding a good encoder E, and parameters W
that minimize the objective still remains. First, we need to impose a form for
the encoder and second we need an approach that can optimize (2) w.r.t. the
parameters W. Independently of the choice of E, (2) is challenging since E is
a mapping to a finite set and, therefore, not differentiable. This implies that
neither H(p) is differentiable no is differentiable w.r.t. the parameters w. ,
These challenges motivate the design decisions of our soft-to-hard annealing
approach, described in the next section.

3.2 Method for quantized differentiable weights
Our model involves three kinds of weights, 1. original learned weights, 2. soft
weights, which are differentiable wrt to original weights and should ideally be

5

very close to any of the value from the quantized set C= (ŵ1, ŵ2, ...ŵL), where
L= number of quantized levels, 3. hard weights, which actually belong to the
quantized set C= (ŵ1, ŵ2, ...ŵL).

Hard assignments For hard assignments we simply use nearest neighbour
criteria. For a weight w, whard = ci, where ci = min

i
[|w − c1|2, |w − c2|2, ...|w −

cL|2]

Soft assignments For soft assignments we have,
φ(ŵ) = softmax(−σ[|w − c1|2, |w − c2|2, ...|w − cL|2]),
where softmax(y1, y2, y3...yL)j :=

eyj

ey1 + ey2 + ...eyL
is the standard softmax op-

erator, such that φ(ŵ) has positive entries and |φ(ŵ)|1=1. We denote that the
jth entry of the φ(ŵ) with φj(ŵ) and note that,

limσ→∞ φj(ŵ) {= 1, if ... j = argminj′∈[L] |ŵ − c
′

j |
. {= 0 ... otherwise.
such that wsoft in limσ→∞ converges to one-hot encoding of the nearest quan-
tized unit in C.

We finally have, wsoft:=
∑L
j=1 cjφi(ŵ) = Cφ(ŵ), which in ideal case would

be very close to whard and its differentiable unlike the hard counterpart.

Entropy H(w,ŵ)=
∑N
i=1(

∫∞
−∞−p(wi)d(wi)∗log(p(ŵi))) =

∑N
i=1(−1∗log(p(ŵi)))

here, p(x) =
1√
2πσ2

e

−(x− µ)2

2σ2 and ŵi is the hard quantized weight.

Soft to hard annealing Our soft assignment scheme gives us differentiable
approximations F̂ and Ĥ(w) of the discretized network F and the sample entropy
H(p), respectively. However, our objective is to learn network parameters W that
minimize (2) when using the encoder with hard assignments, such that we obtain
a compressible symbol stream E(z) which we can compress using, e.g., arithmetic
coding [?]. To this end, we anneal σ from some initial value σ goes from 0 to ∞
during training, such that the soft approximation gradually becomes a better
approximation of the final hard quantization we will use. Choosing the annealing
schedule is crucial as annealing too slowly may allow the network to invert the
soft assignments (resulting in large weights), and annealing too fast leads to
vanishing gradients too early, thereby preventing learning. In practice, one can
either parametrize σ as a function of the iteration, or tie it to an auxiliary target
such as the difference between the network losses incurred by soft quantization
and hard quantization..

6

4 Discussion and further scope
In our study while calculating the entropy loss(H(w, ŵ)) we have assumed that
the weights come from a N(µ, σ2), where µ= mean of pre-trained weights, σ2=
variance of pre-trained weights.
This I believe is a quite a big assumption and that our performance can be
further robust by trying out the following two ideas:
1. To plot the means and variances of each layer and then handpick n mean(µi)
and variance(σ2

i) (n is experimental). After this consider that our weights
come from π1N(µ1, σ

2
1) + π2N(µ2, σ

2
2) + π3N(µ3, σ

2
3) + ...πnN(µn, σ

2
n), where

π1, π2...πn are learnable.

2. Instead of handpicking mean(µi) and variance(σ2
i) like in (1) above we learn

them along with the weights, so that we get µi and σ2
i suitable according to our

model. However even in this case, n: number of gaussian distribution considered,
is experimental and π1, π2...πn in π1N(µ1, σ

2
1) + π2N(µ2, σ

2
2) + π3N(µ3, σ

2
3) + ...πnN(µn, σ

2
n)

are learnable.

I believe that going along these directions would give us better performance
in terms of accuracy because they surely capture a more closer nature of our
weights than a single N(µ, σ2).

5 Conclusion
During our experiments we observe that back-propagating on the distortion
loss itself gives quite a good accuracy inferring that our models do have some
redundant information stored in them. It is this redundancy that we intended
to remove by having representing our models as compactly as possible without
significant decrease in accuracy. From the coding side of things, a lot of things
are involved into the quantizing weights and main care should be taken wrt to
the fact that gradients are actually being calculated wrt the origial weights and
not the quantized ones which we’ve replaced in our model.

References
[1] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In

Proceedings of NIPS, pp.598–605, 1990.

[2] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights
and connections for efficient neural network. In Advances in Neural Informa-
tion Processing Systems (NIPS), pp. 1135–1143, 2015

[3] David A Huffman. A method for the construction of minimum-redundancy
codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

7

[4] Hinton, G., Vinyals, O., and Dean, J. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015.

[5] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil. Model compression. In Pro-
ceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’06, pages 535–541, New York, NY, USA,
2006. ACM.

[6] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen. Compress-
ing neural networks with the hashing trick. In Proceedings of ICML, pp.
2285–2294, 2015.

[7] G. E. Hinton and D. Van Camp. Keeping the neural networks simple by
minimizing the description length of the weights. In Proceedings of the sixth
annual conference on Computational learning theory, pp. 5–13. ACM, 1993.

[8] C. Louizos, K. Ullrich, and M. Welling. Bayesian compression for deep
learning. In Proceedings of NIPS, pp. 3288–3298, 2017.

[9] Karen Ullrich, Edward Meeds, Max Welling. SOFT WEIGHT-SHARING
FOR NEURAL NETWORK COMPRESSION ICLR 2017.

[10] Steven J Nowlan and Geoffrey E Hinton. Simplifying neural networks by
soft weight-sharing. Neural computation, 4(4):473–493, 1992

[11] Marton Havasi, Robert Peharz, José Miguel Hernández-Lobato MINIMAL
RANDOM CODE LEARNING : GETTING BITS BACK FROM COM-
PRESSED MODEL PARAMETERS ICLR 2019

[12] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational
dropout sparsifies deep neural networks. ICML 2017

[13] Shashank Singh, Ashish Khetan, Zohar Karnin DARC: Differentiable
ARchitecture Compression

[14] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han AMC:
AutoML for Model Compression and Acceleration on Mobile Devices

[15] Shannon, C. E. Coding theorems for a discrete source witha fidelity criterion.
IRE Nat. Conv. Rec, 4(142-163):1,1959.

8

	Introduction
	Related work
	Non-bayesian based approaches:
	Bayesian based approaches:
	Other:

	Proposed Method
	Problem Formulation
	Method for quantized differentiable weights

	Discussion and further scope
	Conclusion

